A New Solution Method for Singular Stochastic Control Problems∗†

نویسندگان

  • Erhan Bayraktar
  • Masahiko Egami
چکیده

We consider a singular stochastic control problem, which is called the Monotone Follower Stochastic Control Problem and give sufficient conditions for the existence and uniqueness of a local-time type optimal control. To establish this result we use a methodology that has not been employed to solve singular control problems. We first confine ourselves to local time strategies. Then we apply a transformation to the value (i.e. the total reward accrued by reflecting the diffusion at a given boundary) corresponding to a particular local time strategy and show that it is linear in its continuation region. Now, the problem of finding the optimal boundary becomes a nonlinear optimization problem: The slope of the linear function and an obstacle function need to be simultaneously maximized. The necessary conditions of optimality come from first order derivative conditions. We show that under some weak assumptions these conditions become sufficient. We also show that the local time strategies are optimal in the class of all monotone increasing controls. As a byproduct of our analysis, we give sufficient conditions for the value function to be C on all its domain. We solve two dividend payment problems to show that our sufficient conditions are satisfied by the examples considered in the mainstream literature. We show that our assumptions are satisfied not only when capital of a company is modeled by a Brownian motion with drift but also when we change the modeling assumptions and use a square root process to model the capital. We also sketch how our approach can be generalized to Bounded Variation Follower Stochastic Control Problem and give the characterization of the optimal boundaries. We solve two inventory management problems. In the first problem the contents of the inventory fluctuate as a Brownian motion with drift and in the second one the contents fluctuate as an Ornstein-Uhlenbeck process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials

Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...

متن کامل

Numerical Solution of Optimal Control of Time-varying Singular Systems via Operational Matrices

In this paper, a numerical method for solving the constrained optimal control of time-varying singular systems with quadratic performance index is presented. Presented method is based on Bernste in polynomials. Operational matrices of integration, differentiation and product are introduced and utilized to reduce the optimal control of time-varying singular problems to the solution of algebraic ...

متن کامل

A Discrete Singular Convolution Method for the Seepage Analysis in Porous Media with Irregular Geometry

A novel discrete singular convolution (DSC)  formulation  is  presented for the seepage analysis in irregular geometric porous media. The DSC is a new promising numerical approach which has been recently applied to solve several engineering problems. For a medium with regular geometry, realizing of the DSC for the seepage analysis is straight forward. But DSC implementation for a medium with ir...

متن کامل

Solution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method

In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...

متن کامل

Solution of the Stochastic Control Problem in Unbounded Domains

Bellman’s dynamic programming equation for the optimal index and control law for stochastic control problems is a parabolic or elliptic partial differential equation frequently dejhed in an unbounded domain. Ezi.sting methods of solution require bounded domain approximations, the application of singular perturbation techniques or Monte Carlo simulation procedures. In this paper, usin,q the fact...

متن کامل

A Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases

The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007